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Introduction

Temporal information-processing tasks generally require that the continuous stream of
time beparsedor segmented, which involves determining boundaries that divide the
stream into distinct intervals. In aclock-based segmentation, the boundaries are spaced
equally in time, resulting in fixed-duration intervals. In anevent-based segmentation,
the boundaries depend on the state of the environment, resulting in variable-duration
intervals. Models of temporal information processing in cognitive science and artificial
intelligence generally rely on clock-based segmentation. However, event-based seg-
mentation can greatly simplify temporal information-processing tasks. We illustrate by
describing a complex control problem that appears intractable when cast in terms of a
clock-based segmentation, but has a straightforward solution when cast in terms of an
event-based segmentation.

Parsing Time

Figure 1 shows intuitive examples of two temporal patterns parsed both by clock- and
event-based segmentations. The clock-based segmentation of a time series (panel A)
produces intervals that are independent of the nature of the series, whereas the event-
based segmentation of the series (panel B) produces intervals that are delimited by
zero crossings. The clock-based segmentation of a musical excerpt (panel C) is repre-
sented by notes of equal duration, whereas the event-based segmentation of the same
excerpt (panel D) is represented by one note per musical event. In a clock-based seg-
mentation, it is natural for the end boundary of one interval to be the start boundary for
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Fig. 1. A) A time series parsed according to a clock-based segmentation; B) the time series with
an event-based segmentation; C) a musical excerpt parsed according to a clock-based segmenta-
tion; D) the musical excerpt with an event-based segmentation.
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the next, leading to nonoverlapping, contiguous intervals. However, in an event-based
segmentation, where the start and end boundaries may be distinct and dependent on
different features of the temporal pattern, the resulting intervals may be overlapping
and noncontiguous. Another consequence of event-based segmentations is that the
resulting representations will often include an explicit encoding of the duration of an
interval, e.g., the musical notation for half notes versus quarter notes; in contrast, a
clock-based segmentation encodes this information implicitly.

Our distinction between clock- and event-based segmentation is not original.
Although clock-based segmentation is more common and is often the more intuitive
approach, event-based segmentation has appeared in many information processing
models. In the following three sections, we describe models from the domains of biol-
ogy, control engineering, and neural networks that utilize event-based segmentation.
Our goal is to highlight the distinction between clock- and event-based segmentation
and to point out some of the virtues of event-based segmentation, so that the reader
will become more cognizant of the space of alternatives that can be used for temporal
information-processing tasks.

Event-Based Segmentation in Biological Systems

Biological organisms are bombarded with stimulation from the environment and do
not have the capacity to process all information in real time. Consequently, organisms
require some type oforienting mechanism to alert the organism when an unusual or
interesting stimulus appears, allowing the organism to process and respond to the stim-
ulus. One can conceive of the orienting mechanism acting as a gate on the flow of
information from the sensory organs to higher cognitive processes. The orienting
mechanism does not need to know how to respond to the stimulus, but only that the
stimulus is salient and must be dealt with. The latter problem may be significantly eas-
ier than the former. The orienting mechanism achieves a form of event-based segmen-
tation. Its detection of a salient event in the temporal stream triggers information
processing of the event.

The psychological reality of event-based segmentation can be illustrated through a
familiar phenomenon. Consider the experience of traveling from one location to
another, such as from home to office. If the route is unfamiliar, as when one first starts
a new job, the trip is confusing and lengthy, but as one gains more experience follow-
ing the route, one has the sense that the trip becomes shorter. One explanation for this
phenomenon is as follows. On an unfamiliar route, the orienting mechanism constantly
detects novel events, and a large number of such events will accumulate over the
course of the trip. In contrast, few novel events occur on a familiar route. If our percep-
tion of time is event based, meaning that higher centers of cognition count the number
of events occurring in a temporal window, not the number of milliseconds, then one
will have the sense that a familiar trip is shorter than an unfamiliar trip. Experimental
evidence clearly supports the notion that the event stream influences the perception of
duration, although the relationship between novelty and the perception of duration is
complicated due to interacting variables such as sequence complexity and attention
(e.g., [1] [4] [7] [8] [20]).



Event-Based Segmentation in Hybrid Systems

In the engineering disciplines of automation, manufacturing, and robotics, event-based
segmentation has been a key idea for real-world monitoring and control tasks [17]
[18]. Figure 2 sketches what these disciplines call ahybrid system, consisting of a con-
tinuous-time and continuous-state plant (e.g., representing the state of robot and its
environment over time), and an abstract model of the plant, called adiscrete event
dynamic system (DEDS), which might be a finite-state automaton, a Petri net, a
Markov model, or a queueing model. The state-time trajectory in Figure 2A depicts the
continuous dynamics of the plant. The state space is quantized into discrete regions,
and an event is said to occur when the trajectory crosses from one region into another,
denoted by circles on the state trajectory. Events trigger state transitions in the DEDS.
Thus, the DEDS is presented with a sequence of events determined by salient changes
in the environment, not by ticks of a clock—the key aspect of event-based segmenta-
tion. Perhaps a more familiar example of a hybrid system to most readers is a hidden
Markov model used for speech recognition.

In a hybrid system, machine learning techniques can be used to adapt several dis-
tinct components of the system, including event identification [11] [16], DEDS identi-
fication [9] [10], and policy learning based on the DEDS model [2] [3].

Event-Based Segmentation in Neural Network Models

Although neural network models of temporal pattern analysis commonly rely on
clock-based representations, some incorporate event-based segmentation. Figure 3
depicts three such models, which we briefly describe.

Figure 3A sketches a three-stage approach to speech recognition [14], motivated by
the demands of a simple hardware implementation. The segmentation stage demar-
cates word boundaries, the normalization stage adjusts the word’s duration, and the
recognition stage processes the resulting fixed-size pattern. Surprisingly, in architec-
tures such as this with distinct segmentation and recognition stages, speech recognition
researchers anecdotally note that performance is far more dependent on the robustness
of the segmentation stage than on the recognition stage.

Figure 3B shows thelong short-term memory architecture [5]. Each circle depicts a
connectionist unit that responds to the input stream. Detection of an event by the left-
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Fig. 2. A) A two-dimensional state space for a continuous plant. The arrow represents a tempo-
ral trajectory through state space. The labeled regions indicate a quantization of state space, and
the circles on the trajectory indicate a transition from one region to another. B) A discrete-event
dynamic system model of the plant.
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most unit allows some transformation of the event to be stored in a memory cell that
latches the value via a linear recurrent connection. The rightmost unit determines the
conditions under which the latched value will become available to the rest of the sys-
tem. Through event-based segmentation of the input stream, this architecture is able to
learn long-term temporal dependencies that cannot be discovered by standard architec-
tures and training algorithms.

Figure 3C shows a hierarchical temporal prediction architecture [15]. Thefine-
scale predictor is a neural net that processes an input sequence, at each time predicting
the next element in the sequence. Theprediction comparatordetects surprising events
in the input stream by examining the discrepancy between the prediction and reality.
Surprising events are passed to acoarse-scale predictor, which attempts to discover
structure that the fine-scale predictor did not learn. Thus, a hierarchical analysis of the
input stream is achieved via event-based segmentation.

In each model, clock-based time is eliminated from the input representation, and
the resulting event-based representation greatly reduces the complexity of learning.

A Real-World Control Problem

We now change topics and describe a problem that we have studied in the area of adap-
tive control and home automation. The problem appears intractable when cast in terms
of a clock-based segmentation, but has an extremely simple solution when cast in
terms of an event-based segmentation. We begin by describing the problem, explain
why a clock-based segmentation of time leads to insurmountable practical difficulties
in solving the problem, and then describe an approach using event-based segmentation.

Home Automation

The home automation industry has promised homes that can be programmed to per-
form such tasks as closing the drapes at night, turning down the stereo volume when
the phone rings, flashing the bathroom lights as a reminder to the inhabitants to take
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Fig. 3. Three neural network models that incorporate event-based segmentation: A) speech rec-
ognition model [14]; B) long short-term memory [5]; C) hierarchical temporal prediction [15].
The thick lines denote transmission of vector values, the thin lines scalars. The triangle junctions
denote a multiplicative or gating connection.



their medication, and drawing a bath at a certain temperature at a certain time of day.
Despite these promises, few homes—even in new construction—are automated. One
reason that the industry has yet to reach its potential is that residents are reluctant to
program their VCRs, let alone their homes. A programmable house seems like a tre-
mendous burden, not a great boon. In response, several of the more popular home auto-
mation systems are set up to allow a service technician to regularly reprogram the
home for the residents as their needs change.

Rather than having a home that can be programmed to perform various functions,
one would really like a home thatprogrammed itself to accommodate the schedules
and lifestyles of the inhabitants. This is the goal of theAdaptive House project [13].
The Adaptive House is a residence in Boulder, Colorado, that has been outfitted with
over seventy-five sensors that monitor various aspects of the environment, including
room temperature, ambient light, sound level, motion, door and window positions, and
outside weather and insolation. Actuators control air heating via a whole-house fur-
nace and electric space heaters, water heating, lighting, and ventilation. The project
involves several subprojects, each with its own challenges and peculiarities, including
the regulation of indoor lighting, temperature, and hot water. In the following section,
we describe the lighting control problem.

Lighting Control

We call the control system in the Adaptive HouseACHE, an acronym for Adaptive Con-
trol of Home Environments. ACHE monitors the state of the environment and senses
actions performed by the inhabitants; these actions include turning lights on and off
and setting their intensities. ACHE can then learn the inhabitants’ lighting preferences,
and can automatically adjust the lights according to these preferences, freeing the
inhabitants from manual control. In addition, energy consumption influences control
decisions, in a manner that we describe below. More important than turning lights on
and off, ACHE sets lightingmoods—the pattern and intensity of lighting. In a room
used for multiple activities (e.g., a living room might be used for entertainment, read-
ing, or watching television) and having several independently controlled banks of
lights, determining the appropriate lighting mood is nontrivial. Figure 4 summarizes
the framework in whichACHE operates.

ACHE
device

environmental
state

setpoints

inhabitant actions and energy costs

Fig. 4. ACHE specifies device intensity setting (brightness), which affects the state of the envi-
ronment, which in turn serves as input toACHE. The training signals toACHE are the actions
taken by the inhabitants and energy costs.



What Makes Lighting Control Difficult?

Lighting control in the Adaptive House is a difficult task for a variety of reasons.

• The Adaptive House has twenty-two independently controlled banks of lights, each
of which has sixteen intensity settings. The great room (consisting of the living
room, dining room, and kitchen) alone has seven banks of lights.

• Although motion sensors can detect occupancy, it is not sufficient to simply switch
on lights when motion is sensed. If one rolls over in bed at night, the lights should
not go on. If one sits still in a chair while reading, the lights should not go off after a
motion time-out period. Further, there is a 700 ms time lag between the firing of a
motion sensor and the response ofACHE. This is due almost entirely to an inefficient
protocol for sending commands to the lights. This lag is long enough to inconve-
nience the inhabitant.

• The range of time scales involved in lighting control spans many orders of magni-
tude. Control decisions must be responsive—in a fraction of a second—to changing
environmental conditions. However, decisions can have implication that span many
hours, e.g., in energy consumption.

• Two constraints must be satisfied simultaneously: maintaining lighting according to
inhabitant preferences and conserving energy. These two constraints often conflict.
For example, leaving all lights on may be sufficient to satisfy the inhabitants, but
will be costly. Similarly, if minimizing energy consumption is the goal, lights will
never be turned on.

Optimal Control
In what sort of framework can the two constraints—appeasing the inhabitants and con-
serving energy—be integrated? Supervised learning will not do: If lighting device set-
tings chosen by the inhabitant serve as targets for a supervised learning system, energy
costs will not be considered. Instead, we have adopted anoptimal control framework in
which failing to satisfy each constraint has an associated cost. Adiscomfort cost is
incurred if inhabitant preferences are not met, i.e., if the inhabitant is not happy with
the settings determined byACHE and chooses to manually adjust the light settings. An
energy cost is incurred based on the intensity setting of a bank of lights. Theexpected
average cost, , starting at time  can then be expressed as

where  is the discomfort cost associated with the control decisionu at t, and
 is the energy cost associated with the environmental statex at t. The goal is to

find an optimal control policy—a mapping from states  to decisions —that mini-
mizes the expected average cost.

This description of the control problem assumed a quantization of time into inter-
vals indexed byt. Most research in optimal control treats these intervals as clock
based. However, the framework applies equally well to intervals produced by an event-
based segmentation. We will take advantage of this observation below.
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Reinforcement learning

Although dynamic programming can be used to find a sequence of decisionsu that
minimizeJ, it has two significant drawbacks. First, it requires a model of the environ-
ment and the immediate cost function. Second, computing expectations over highly
uncertain future states can be expensive. Consequently, we usereinforcement learning,
a stochastic form of dynamic programming that samples trajectories in state space.

The particular version of reinforcement learning we consider is calledQ learning
[21] [22]. Q learning provides an incremental update algorithm for determining the
minimum expected discounted cost given that actionu is taken in statex:

whereα is the learning rate,λ is the discount factor, and  is the immediate cost
incurred att. Once this algorithm converges, the optimal action to take is the one that
minimizes the Q value in the current state. Because the algorithm requires that all
states be visited to learn their Q values, the control policy, , requires exploration:

where  is the exploration rate. Given fully observable state and infinite exploration,
Q learning is guaranteed to converge on an optimal policy.

Temporal Credit Assignment and the Issue of Time Scale

Figure 5 presents an alternative view of the sequential decision framework. At the
beginning of each time interval, the current state is observed and a control decision
must be made. Following the decision, a cost is observed. This cost can be attributed to
the current decision or to any earlier decision, as depicted by the arrows. Thetemporal
credit assignment problem involves determining which decision or decisions in the
sequence are responsible for the observed costs. The challenge of learning is to cor-
rectly assign credit in time. This is analogous to the problem faced by back propaga-
tion in training recurrent networks, as described in several chapters of this volume.

On the surface, the temporal credit assignment problem for lighting control seems
exacerbated due to the range of time scales involved. Because control decisions must
be responsive to changing environmental conditions, the time interval between deci-
sions must be brief, on the order of 200 msec. However, the shorter the time interval,
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Fig. 5. The temporal credit assignment problem



the more difficult the temporal credit assignment problem becomes. Consider a deci-
sion to turn on lights when a room becomes occupied. As long as the room remains
occupied, an energy cost is incurred at each time interval and must be attributed to the
initial decision. With a 200 msec fixed interval and an hour long occupancy period, this
amounts to 18,000 time intervals over which credit assignment must be performed.
Consider another scenario: The inhabitant enters a room,ACHE fails to switch on the
light, and the inhabitant does so manually. The gap between the room entry and the
manual override might be about five seconds, meaning that punishment for failing to
turn on the light must be propagated back 25 time intervals.

Making the Lighting Control Problem Tractable

Although the standard approach to sequential decision problems using reinforcement
learning involves a clock-based segmentation that divides the stream of time into uni-
form intervals whose durations correspond to the finest time grain of the domain, we
have argued that this approach is unlikely to succeed for lighting control. ACHE would
require orders of magnitude more training than any inhabitant would be willing to pro-
vide. For this reason, we were forced to consider an alternative to clock-based segmen-
tation. Using event-based segmentation, along with three other techniques that take
advantage of peculiarities of the lighting domain, the temporal credit assignment is
eliminated and learning becomes almost trivial. In the following sections, we describe
the key features of our solution that simplify the control problem.

Decomposing the Task Based on Lighting Zones

To a first order, the setting of a light in onezone (room) will not affect the ambient
light level in another zone, nor will it affect inhabitant preferences in other zones. This
is not strictly true, because light in one zone may spill into another, but by assuming
independence of state and lighting decisions across zones, one can decompose the
overall control problem into multiple smaller problems. This type of decomposition is
extremely helpful because standard reinforcement learning methods do not have any
way of taking advantage of compositional structure in the decision space, i.e., 22 banks
of lights with 16 intensity settings each would result in a decision space of 1622 alter-
natives. The Adaptive House is naturally divided into eight lighting control zones, the
largest of which has seven banks of lights and the smallest has only one. In the remain-
der of this paper, we focus on the control task for a particular zone.

Defining Time Intervals Using Event-Based Segmentation

The key to an event-based segmentation is an orienting mechanism that determines
salient events. These events were defined to be:

• zone entry
• zone exit
• a significant change in the outdoor light level



• change in inhabitant activities (as indicated by the fact that the inhabitant manu-
ally adjusts light settings after having been satisfied with the previous settings for
more than two minutes)

• in the largest zone, the great room, movement from one region of the zone to
another

• anticipation of a zone entry

We discuss the mechanics of how these events are detected in later sections. When an
event is detected, a lighting control decision is made. The window of time between
events is treated as the basic interval. It is unitary in that only one lighting decision is
made within the window, at the start of the window. Consequently, a discomfort cost—
when the inhabitant manually overrides the device settings selected byACHE—can be
incurred at most one time within the window, and is attributable to the decision made
at the start of the window. Similarly, energy costs can be summed over the window and
attributed to the decision made at the start of the window.

Because costs do not extend beyond the window, it might seem that the problem of
temporal credit assignment is avoided. However, this is not necessarily the case,
because a decision made at one time can affect the future state of the environment
which in turn can affect future decisions and hence future costs.

Eliminating Long-Term Consequences of Decisions

In the lighting control domain, the long-term consequences of decisions can in fact be
eliminated due to three additional properties of the domain:

• The effect of a decision on a device is completely undone by a subsequent deci-
sion. This is true only if the decisions indicate absolute, not relative, device set-
tings.

• Inhabitant activities are basically unaffected byACHE’s decisions. The inhabitant
may have to switch on a light ifACHE fails to do so, but the inhabitant will not
stop preparing dinner and instead watch television if a light doesn’t turn on.

• The current device settings are irrelevant to decision making. Thus, they need not
be considered part of the environmental state.

The net consequence of these properties is that the current environmental state does
not depend on earlier decisions. By eliminating the long-term consequences of deci-
sions and using event-based segmentation, we establish a finite horizon on the effect of
a decision—the end of the event window. Lighting control thus becomes a single-stage
decision problem, and the temporal credit assignment problem vanishes.

Getting the Most of Each Experience

In the standard reinforcement learning framework, a controller that makes some deci-
sionA will learn only about the consequences ofA, not any other decisionB. This is
because the two decisionsA andB are unrelated. However, in the case of lighting con-
trol, the decisions represent device intensity settings and hence have an intrinsic rela-
tionship to one another. With additional domain knowledge,ACHE can learn about
some choices that were not selected.



Specifically, suppose thatACHE decides to set a device to intensityA, and the
inhabitant overridesACHE and sets the device to intensityC, thereby incurring a dis-
comfort cost for decisionA. If A was lower thanC, then anyB which is lower thanA
will also incur the discomfort cost. Similarly, ifA was higher thanC, then anyB which
is higher thanA will also incur the discomfort cost. Because the total cost is the sum of
the discomfort cost and the energy cost, and the energy cost can be computed based on
trivial knowledge of the device,ACHE can determine the cost thatwould have been
incurred had it made decisionB. Thus, although reinforcement learning generally
involves learning from experience,ACHE can learn about the consequences of some
decisions it didnot experience because it has a partial model of the cost function.

ACHE Architecture

Figure 6 sketches the overall architecture ofACHE. Starting on the right side of the fig-
ure, theQ learning controller selects device intensity settings based on the current
state. Theorienting mechanismacts to gate the controller such that decisions are made
only when salient events have been detected. The controller receives a training signal,
in the form of a total cost and depicted in the Figure by the arrow cutting through the
controller, from thecost evaluator. Cost evaluation is performed when an event is
detected, and hence the cost evaluator is also gated by the orienting mechanism. The
cost evaluator needs to know when the inhabitant manually overrides the device set-
tings produced by the controller, and hence it receives input in the Figure from the
light switches. The inhabitant can adjust the intensity of a device as well as switch it on
or off; this information is also provided to the cost evaluator.

The state used for decision making is provided by thestate estimator, which
attempts to form a high-level state representation that explicitly encodes information
relevant for decision making. In particular, we view two types of information as cen-
tral: inhabitant activities and the level of natural light in the zone. Inhabitant activities
cannot easily be determined from the available sensor data, but we can characterize the
activities in a coarse way by observing short-term occupancy patterns across zones in
the house. If the inhabitant is cleaning house, we would expect many zone changes in a
short time; if the inhabitant is reading quietly in a corner, we would expect few zone
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changes; if the inhabitant getting ready for work in the morning, we might expect an
occupancy pattern that alternates between the bedroom and bathroom. Anoccupancy
model andanticipator provide information about these occupancy patterns to the state
estimator. We discuss the occupancy model and the anticipator in a following section.

The second key bit of information useful for decision making is the level of natural
light in the zone. This is a tricky problem, as light sensors in a zone measure the ambi-
ent light level which depends on the current state of the lighting devices, the outside
light level, and whether shades are open or closed. Thenatural light estimator attempts
to determine the level of natural light in the zone if the lighting devices were turned
off.

Although the state representation inACHE attempts to recover some important
information about the environment, the available sensor data does not contain all infor-
mation relevant to the control task. For example,ACHE cannot determine the exact
location of the inhabitants, their state of dark adaptation, or their intentions at the
moment. Consequently, the state provided to the controller is non-Markovian, and Q
learning is not guaranteed to converge on an optimal policy.

Q-Learning Controller

As we indicated earlier, each zone is treated as an independent control task and has a
separate Q controller. In addition, the control task for eachdevice in each zone is
treated as independent of each another. Although the optimal setting of one device in a
zone certainly depends on the settings of others, the independent-controller approach
still appears to capture these dependencies [12].

The Q controller for a particular zone and a particular device in a zone is imple-
mented as a pair of look-up tables—one for when the zone is occupied, one for when
the zone is empty—that map a state and a decision to an expected cost. The occupied
table takes as its state:

• natural light level (5 bins)
• number of zone changes by inhabitants in the last minute (0–1, 2–5, 6+)
• number of zone changes by inhabitants in the last five minutes (0–1, 2–5, 6+)
• if zone is great room, location in room (south, north, or moving)

and allows five control decisions: intensity setting 0 (device off), 6, 9, 12, or 15 (device
fully on). We might have allowed sixteen decisions, corresponding to each of the six-
teen intensity settings our devices support, but subjectively many of these settings are
indistinguishable. The empty table takes as its state:

• number of entries to zone under consideration in the last five minutes (0–1, 2+)
• number of entries to zone under consideration in the last 20 minutes (0–1, 2+)
• relative power consumption of device in its current state (5 bins)

and allows for two control decisions: leave the device at its current setting, or turn off
the device.



Occupancy Model

The occupancy model determines which zones in the house are currently occupied
based on motion detector signals and a finite-state model of the house. When motion is
sensed in a currently unoccupied zone, the zone is flagged as occupied. It remains so
until motion is sensed in a physically adjacent zone and no additional motion signals
are received in the zone for at leastκ seconds. The occupancy model also uses opening
and closing of the front and back doors, in conjunction with motion signals, to deter-
mine when an occupant enters or exits the house.

The value forκ depends on whether a single or multiple occupants are in the home.
It is necessary to be conservative in declaring a zone to be empty if the home contains
multiple occupants, for the following reason. If zone 1 is occupied, and motion is
sensed in adjacent zone 2, it could be that multiple inhabitants have moved from zone
1 to zone 2 and zone 1 is now empty, or it could be that a single inhabitant has moved
from 1 to 2, and zone 1 is still occupied by another inhabitant who is stationary at the
time. Thus,κ is set to the conservative value of 600 seconds when the home contains
multiple occupants, but only 10 seconds if the home contains a single occupant. The
single/multiple status is also determined by the occupancy model: When multiple
zones are occupied for longer than ten seconds, the “multiple occupant” status is set,
and remains set until the home becomes empty.

Anticipator

The occupancy model tags a zone as occupied when motion in that zone is first sensed.
This is inadequate for lighting control, however, due to the fact that the motion detec-
tors are sometimes sluggish—the inhabitant can walk half way across a room before
they fire—and once motion has been detected, the time to transmit commands to the
lights is about 700 msec. Consequently, one would really likeACHE to predict an
impending zone occupancy and to issue a lighting command shortlybefore the zone
became occupied. A neural network, called theanticipator, is used for this purpose; it
predicts which zone or zones will become occupied in the next two seconds.

One might argue that the anticipator is needed only because of limitations of the
hardware in the Adaptive Home, and could be avoided with more expensive state-of-
the-art sensors and actuators. We believe, however, that noisy and undependable sen-
sors pose a constant challenge in real-world control, and prediction provides a means
of increasing reliability in the face of noise.

The anticipator takes the following data as input:

• average value of the binary motion detector signal in a 1, 3, and 6 second win-
dow (36 inputs)

• instantaneous and 2 second average of the binary door status (20 inputs)
• instantaneous, 1 second, and 3 second averages of sound level (33 inputs)
• current zone occupancy status and durations (16 inputs)
• time of day (2 inputs, in a circular 24 hour clock-based representation)

The purpose of including multiple time averages of sensor values is to encode informa-
tion about the recent temporal history in a static representation. Although one could



use a tapped-delay line to serve this purpose, the time averaged values allow for a more
compact and explicit representation of critical information. For example, one can
determine that a door just opened by checking that the instantaneous door status is 1
(open), and the two-second average is less than 1; and one can determine that motion
just ceased if the three-second average is larger than the one-second average.

The output of the anticipator is interpreted as the probability, for each of the eight
zones, that the zone will become occupied in the next two seconds, given that it is cur-
rently unoccupied. The output of the anticipator is ignored if the zone is currently
occupied. The anticipator runs every 250 msec. It is a standard single-hidden-layer
neural network with 107 inputs, 50 hidden units, 8 output units, direct input-output
connections, and a symmetric sigmoidal activation function. The large number of free
parameters in the network is justified by the availability of large amounts of training
data.

The occupancy model provides the training signal to the anticipator. The anticipa-
tor’s job is to detect cues in the environment that reliably predict the zone entry
announced by the occupancy model. The training procedure is inductive: a partially
trained anticipator net is run to make predictions, and when it produces an error, new
data is added to the training set. When a sufficient quantity of new data is added (200
examples), the network is retrained. The anticipator can produce two types of errors: a
miss, when a zone entry fails to be predicted within two seconds of the event, and a
false alarm, when a zone entry is predicted and none in fact occurs. To avoid a miss in
the future, a new training example is generated in which the sequence of eight input
states leading up to the zone entry—corresponding to the states att–2000msec,t–1750
msec, ...,t–250 msec—are all associated with the zone entry. To avoid a false alarm, a
training example is generated in which the state at the time the entry is predicted is
associated with no zone entry. A temporal difference training procedure [19] is used
for the sequence of states leading to the miss. This is appropriate because in the
sequence, each state becomes an increasingly better predictor of the event. Using the
temporal difference procedure yielded slightly better results than standard supervised
learning.

Figure 7 shows a measure of performance of the anticipator as a function of the
amount of training data collected. The horizontal axis also corresponds to time on the
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Fig. 7. Performance of anticipator network as the number of training examples increases



scale of about a month. The performance measure is the ratio of the number ofhits
(correct predictions of a zone entry) to sum of misses plus false alarms collected in a
small time window. Although the curve is noisy, performance is clearly improving as
additional data is collected. Because the anticipator outputs a continuous probability, it
is necessary to threshold the output to produce a definite prediction that can be used by
ACHE. Through empirical tests, we found that a threshold of 0.7 roughly balanced the
miss and false alarm rates.

Anecdotally, the anticipator net does seem to have captured important behavioral
regularities of the house inhabitant. We illustrate several examples using the house
floor plan shown in Figure 8. In the evening, when the inhabitant walks out of the great
room and into the entry (trajectory A), the anticipator predicts that the master bedroom
is about to become occupied. However, when the same pattern of movement occurs in
the morning, the anticipator predicts that the inhabitant is headed toward bedroom 2,
which is used as an office. At night, when the inhabitant gets out of bed and walks
toward the master bath (trajectory C), the anticipator uses the onset of motion in the
master bedroom, along with a sound produced by a creaky floor, to predict that the
bathroom is about to become occupied. This combination of cues is apparently neces-
sary, as sound alone (e.g., telephone ringing) or motion alone (e.g., rolling over in bed)
is insufficient to produce a strong prediction. The anticipator sometimes uses odd but
reliable cues. For example, when the inhabitant showers in the morning, he has a habit
of listening to a radio in the bathroom. Before walking out of the bathroom, he shuts
off the radio. Consequently, a sudden offset of a sustained sound level in the bathroom
is a reliable indicator that the bedroom is about to become occupied. On the whole, the
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Fig. 8. A floor plan of the adaptive house, including locations of sensors and actuators. Three
trajectories are indicated by arrows labeled A, B, and C.



anticipator is not entirely dependable, though, primarily because the sparse representa-
tion of the environment produced by the sensors does not support perfect predictions.

ACHE Parameters and Costs

In the current implementation ofACHE, we use an exploration probability,θ, of 0.05,
causing the controller to take the action believed to be optimal with probability 0.95,
and to try another alternative at the remaining times. Rather than choosing the alterna-
tive arbitrarily from the set of actions, as one might do with undirected reinforcement
learning,ACHE selected the action with next lower energy cost from the action believed
to be optimal. With this choice,ACHE will gradually lower the device setting to mini-
mize energy consumption, as long as the inhabitant does not express discomfort.

Determining the appropriate Q table learning rate,α, is tricky. The learning rate
must be large enough thatACHE adapts after several experiences, but it must not be so
large that a single experience causesACHE to forget what had been learned in the past.
We used a learning rate of 0.3, which provided a reasonable balance between adapt-
ability and stability. The Q learning discount factor,λ, was zero, because event-based
segmentation simplified reinforcement learning to a single-step problem with immedi-
ate payoff.

Finally, we list the various costs in the lighting control problem. We have already
mentioned an energy cost, which was set to $.072 per kilowatt-hour, the actual cost of
electricity charged by the local utility company. The discomfort cost was set to $.01
per device whose setting was manually adjusted by the inhabitant. Because this cost
could be incurred foreach device in a zone, and a zone has as many as seven devices,
up to $.07 could be charged for inhabitant discomfort each time a zone is entered,
which is quite steep relative to energy costs. Two additional costs were incorporated,
related to the anticipator. Consider the situation in which the inhabitant exits a zone,
the lights in the zone are turned off, and when the inhabitant returns to the zone, the
anticipator fails to predict the return. The resulting delay in turning the lights back on
will cause inconvenience to the inhabitant, quantified as a cost of $.01 per device
which was turned off but should have been set to a non-zero intensity. This cost is
incurred only when the anticipator misses the zone entry. The complementary situation
is when the anticipator false alarms, i.e., incorrectly predicts a zone entry, and causes
lights to be turned on in the zone. (The lights are turned back off after a time-out
period, if the zone entry does not occur.) A cost should be incurred in this situation to
reflect annoyance to the inhabitant who may notice lights turning on and off in unoccu-
pied zones. We set this cost to $.01 per device which was turned on as a result of an
anticipator false alarm.

ACHE’s Q table was initialized to the expected energy cost for the corresponding
decision, which assumes that the inhabitant has no preference for the device setting.
Consequently, devices will not be turned on unless the inhabitant expresses discom-
fort. Rather than training the anticipator and the controller simultaneously, the antici-
pator was trained first, over a period of a month, before the controller was turned on.



Results and Discussion

Figure 9 shows energy and discomfort costs as a function of the number of events
experienced byACHE. The discomfort cost includes the anticipator miss and false
alarm costs. The Figure reflects twenty-four days of data collection, and events were
logged only during times when it was likely that indoor lighting would be required,
from 19:00 to 06:59. To smooth out some of the noise, data points in the Figure reflect
the mean value in a moving window of fifty events centered on the current event.
Although the energy cost decreases fairly steadily, the discomfort costs are quite vari-
able. This is due, at least in part, to a programming error inACHE that caused the misat-
tribution of some costs. Because time limitations did not allow us to restartACHE, we
corrected the problem near event 1700 and continuedACHE’s training. From this point
on,ACHE appears to have converged quickly on a low energy cost, low discomfort cost
solution.

Beyond the performance curve, it is difficult to evaluateACHE formally. One would
really like to know whetherACHE is useful and whether people would want such a sys-
tem in their homes. AlthoughACHE appears surprisingly intelligent at times, it can also
frustrate. Overall, the inhabitant found the benefits to outweigh the inconveniences,
rapidly becoming accustomed to lights being controlled automatically. Indeed, when
ACHE is disabled, the home seems cold and uninviting. Although this may seem
implausible to one who hasn’t lived in an automated home, reverting to manual control
of the lights is annoying and cumbersome.

A Training Scenario

ACHE learns quite rapidly, as we illustrate in the following training scenario. To sim-
plify the scenario, assume that the state which serves as input to the Q-learning con-
troller is fixed. The first time that the inhabitant enters a zone (we’ll refer to this as a
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trial) , ACHE decides, based on the initialization Q values, to leave the light off. If the
inhabitant overrides this decision by turning on the light,ACHE immediately learns that
leaving the light off will incur a higher cost (the discomfort cost) than turning on the
light to some intensity (the energy cost). On the next trial,ACHE decides to turn on the
light, but has no reason to believe that one intensity setting will be preferred over
another. Consequently, the lowest intensity setting is selected. On any trial in which the
inhabitant adjusts the light intensity upward, the decision chosen byACHE will incur a
discomfort cost, and on the following trial, a higher intensity will be selected. Training
thus requires just three or four trials, and explores the space of decisions to find the
lowest acceptable intensity. ACHE also attempts to conserve energy by occasionally
“testing” the inhabitant, selecting an intensity setting lower than the setting believed to
be optimal. If the inhabitant does not complain, the cost of the decision is updated to
reflect this fact, and eventually the lower setting will be evaluated as optimal.

This scenario plays out nicely, at least in part because we assumed that the state
serving as input to the Q-learning controller was fixed. In practice, changes in the state
lead to complications. For example, one component of the state representation is the
number of times the inhabitant has recently moved from one zone to another. As this
number increases, the state changes, the Q look-up table switches to a different bin for
decision making, and the experience gained in the previous bin is no longer accessible.
From the inhabitant’s perspective,ACHE appears to forget its recent training. In the
long run, this is not a problem, as eventuallyACHE acquires sufficient experience in all
states. One way of avoiding the inconvenience in the short run is to use a memory-
based approach, such ask-nearest neighbor, to implement the Q function, rather than a
look-up table.

The Role of Event-Based Segmentation

The lighting control problem seems intractable when cast in the conventional frame-
work of a clock-based segmentation of time. However, when cast in the framework of
an event-based segmentation, we have shown that the solution is straightforward,
almost trivial. However, event-based segmentation is not a panacea. In some condi-
tions it will be superior to clock-based segmentation, in other conditions it will not. A
characterization of these conditions is needed to advance the state of the art in tempo-
ral pattern processing. Although we cannot yet provide a formal characterization, we
offer one step in this direction.

A task that involves responding appropriately and adaptively to a dynamic environ-
ment can, in principle, be decomposed into two subtasks: (1) orienting—deciding
when an interesting, unexpected, or unusual event occurs in the environment; and (2)
responding—decidingwhat to do in response to this event. In the lighting control
domain we described in this chapter, as well as previous work we summarized that
used event-based segmentation,a solution to these two subtasks is simpler or more effi-
cient than a solution to the overall task. In particular, when salient events can readily
be discriminated from the background, there is likely to be a win for this task decom-
position. In the lighting control domain, orienting was straightforward based on an
analysis of the domain. Even when a priori knowledge is insufficient to fully specify
the orienting system, it is still possible that salient events are easily discriminated from



the background, in which case a variety of learning procedures could be used to train
an orienting system. The decomposition of the task into an orienting mechanism and a
gated response system may impose a strong enough bias to constrain and simplify the
learning task (e.g., [6]).
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